
Bachelor of Computer Applications
(BCA)

Digital Electronics Lab
(DBCASE108P24)

Self-Learning Material
(SEM 1)

Jaipur National University
Centre for Distance and Online

Education
__

Established by Government of Rajasthan
Approved by UGC under Sec 2(f) of UGC ACT 1956

&
NAAC A+ Accredited

PREFACE

This Digital Electronics lab manual is designed to provide a hands-on learning experience

that complements the theoretical knowledge acquired in your digital electronics course.

Through a series of carefully crafted experiments, you will gain practical skills and a deeper

understanding of fundamental concepts in digital electronics.

The primary objectives of this lab are:

1. Reinforcement of Theoretical Knowledge: To bridge the gap between theory and practice

by applying classroom concepts to real-world scenarios.

2. Skill Development: To develop practical skills in designing, constructing, and

troubleshooting digital circuits.

3. Understanding of Digital Components: To familiarize students with various digital

components such as logic gates, flip-flops, counters, and microcontrollers.

4. Problem-Solving Abilities: To enhance analytical and problem-solving skills through

experimental tasks and projects.

Scope

This lab manual covers a wide range of topics essential for a comprehensive understanding of

digital electronics. The experiments are categorized into several key areas:

1. Basic Logic Gates: Exploring the fundamental building blocks of digital circuits.

2. Combinational Logic: Designing circuits that perform arithmetic and logical

operations.

3. Sequential Logic: Understanding memory elements and timing issues.

4. Programmable Logic Devices: Introduction to more complex and programmable

devices such as FPGAs and CPLDs.

5. Microcontroller Applications: Implementing practical applications using

microcontrollers.

Laboratory Protocol

To ensure a productive and safe learning environment, please adhere to the following

guidelines:

1. Preparation: Read the experiment instructions thoroughly before coming to the lab.

Understanding the theory behind the experiment is crucial.

2. Safety: Always follow safety procedures. Handle all equipment with care and report any

issues to the lab supervisor immediately.

3. Documentation: Maintain a detailed lab notebook. Record your observations, circuit

diagrams, and results meticulously.

4. Collaboration: Work collaboratively with your lab partners, but ensure that you actively

participate in all aspects of the experiment.

TABLE OF CONTENTS

Unit Topic Page No.

1 Basic Logic Gates 1

2 Half Adder 2

3 Full Adder 3

4 4-Bit Binary Counter Using Flip-Flops 4

5 4-to-1 Multiplexer 5

6 D Flip-Flop Operation 6

7 T Flip-Flop Operation 7

8 Synchronous 4-Bit Counter 8

9 Multiplexer Implementation 9

10 Demultiplexer Implementation 10

11 BCD to 7-Segment Decoder 11

12 4-Bit Comparator 12

13 4-Bit Shift Register 13

14 4-Bit Ripple Carry Adder 14

15 Ring Counter 15

16 Johnson Counter 16

17 Binary to Gray Code Converter 17

18 Gray Code to Binary Converter 19

19 BCD Adder 21

20 3-to-8 Decoder 22

21 Binary Multiplier 23

22 4-Bit Binary Subtractor 24

23 4-Bit Magnitude Comparator 25

24 Ring Oscillator 26

25 4-to-16 Decoder 27

1

Digital Electronics Lab

1. Basic Logic Gates

Q: Design and implement a circuit using AND, OR, and NOT gates to realize the Boolean

function 𝐹(𝐴,𝐵,𝐶)= (𝐴⋅𝐵)+ . Draw the truth table and verify the output.

A: Start by understanding the given Boolean function 𝐹(𝐴,𝐵,𝐶)=(𝐴⋅𝐵)+ . This function uses

AND, OR, and NOT gates. First, create the truth table for all possible combinations of inputs

A, B, and C.

A B C A·B F(A, B, C)

0 0 0 0 1 1

0 0 1 0 0 0

0 1 0 0 1 1

0 1 1 0 0 0

1 0 0 0 1 1

1 0 1 0 0 0

1 1 0 1 1 1

1 1 1 1 0 1

Next, draw the circuit. Start with AND gate, which takes inputs A and B. The output of the

AND gate (A·B) goes to one input of the OR gate. Use a NOT gate to invert input C,

producing , which is the other input to the OR gate. The output of OR gate is the function F.

Finally, implement this circuit on a breadboard or using simulation software like Logisim.

Connect the inputs A, B, and C to switches or logic input devices. Verify the output of the

circuit for each combination of inputs and compare it with the truth table. This practical helps

reinforce understanding of basic Boolean algebra and the functioning of basic logic gates.

2

2. Half Adder

Q: Design and implement a half adder circuit using XOR and AND gates. Verify the outputs

for the SUM and Carry, also draw the truth table.

A: A half adder adds two single-bit binary numbers (A and B) and produces carry(C) and

sum (S). The Boolean expressions for the sum and carry are 𝑆=𝐴⊕𝐵 and 𝐶=𝐴⋅𝐵.

The truth table for the half adder:

Draw the circuit. Use an XOR gate for the sum (S = A ⊕ B) and an AND gate for the carry

(C = A · B). Connect the inputs A and B to both gates. The output of the AND gate will be

the carry, and the output XOR gate will be the sum.

Implement this circuit on a breadboard or with simulation software. Use switches or logic

inputs for A and B, and connect LEDs or output devices to the sum and carry outputs. Verify

the outputs by setting different combinations of A and B and comparing the results with the

truth table. This practical demonstrates the fundamental principles of binary addition and

introduces students to combinational logic circuits.

3

3. Full Adder

Q: Design and implement a full adder circuit using an OR gate and two half adders. Draw the

truth table and verify the sum and carry outputs.

A: A full adder adds three binary digits (A, B, and Cin) and produces a sum (S) and a carry-

out (Cout). The Boolean expressions are 𝑆=(𝐴⊕𝐵)⊕𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡=(𝐴⋅𝐵)+(𝐶𝑖𝑛⋅(𝐴⊕𝐵)).

The truth table for the full adder:

Draw the circuit. First, make two half adders. The first half adder adds A and B, resulting in a

carry (C1) and an intermediate sum (S1). S1 and Cin are added by the second half adder,

generating the final sum (S) and an additional carry (C2). Finally, use an OR gate to combine

the two carry outputs (Cout = C1 + C2).

Implement this circuit on a breadboard or using simulation software. Verify the outputs by

setting different combinations of A, B, and Cin, and comparing the results with the truth

table. This practical helps student understands the concept of hierarchical design in digital

circuits, where complex circuits are built from simpler ones.

4

4. 4-Bit Binary Counter Using Flip-Flops

Q: Design and implement a 4-bit binary counter using JK flip-flops. Draw the state transition

table and verify the counter operation.

A: A 4-bit binary counter uses flip-flops to count from 0 to 15 in binary. JK flip-flops are

ideal because they can toggle states based on input conditions. Four JK flip-flops should be

connected in series, with each flip-flop's output acting as the subsequent one's clock input.

Create the state transition table:

| Present State | Next State |

Connect the J and K inputs of each flip-flop to logic high (1) to enable toggling. The clock

input for the first flip-flop receives the external clock signal. The output (Q) of each flip-flop

connects to the input of the next, forming a ripple counter.

Implement this on a breadboard or using simulation software. Verify the counter's operation

by applying a clock signal and observing the flip-flops' outputs. The outputs should represent

the binary count sequence from 0000 to 1111. This practical demonstrates sequential logic

design and the application of flip-flops in counters.

5

5. 4-to-1 Multiplexer

Q: Design and implement a 4-to-1 multiplexer using basic logic gates. Draw the truth table

and verify the output.

A: A 4-to-1 multiplexer selects one of four input lines (I0, I1, I2, I3) based on two select lines

(S0, S1) and outputs the selected input. The Boolean expression for the output Y is

𝑌=(𝑆0‾⋅𝑆1‾⋅𝐼0)+(𝑆0‾⋅𝑆1⋅𝐼1)+(𝑆0⋅𝑆1‾⋅𝐼2)+(𝑆0⋅𝑆1⋅𝐼3)Y=(S0⋅S1⋅I0)+(S0⋅S1⋅I1)+(S0⋅S1⋅I2)

+(S0⋅S1⋅I3).

Create the truth table:

Draw the circuit. Use AND gates to implement each product term and an OR gate to combine

them. For example, the first term S0⋅ S1⋅ I0 uses two NOT gates to invert S0 and S1,

followed by an AND gate with I0.

Implement this on a breadboard or using simulation software. Verify the output by setting

different combinations of S0 and S1, and applying inputs to I0, I1, I2, and I3. The output

should match the selected input based on the truth table. This practical illustrates how

multiplexers function and their application in digital systems.

6

6. D Flip-Flop Operation

Q: Design and implement a D flip-flop using NAND gates. Draw the truth table and verify

the outputs for various inputs.

A: A D flip-flop captures the value of the D input at the moment the clock (CLK) transitions

from low to high (positive edge-triggered) and holds that value until the next clock edge. The

output (Q) changes based on the D input only at the clock's rising edge.

Create the truth table:

To design a D flip-flop using NAND gates:

1. Create a SR latch using NAND gates.

2. Modify the SR latch to accept a single D input.

3. Connect the D input directly to the S input of the SR latch and through an inverter to

the R input.

Connect the clock signal (CLK) to the enable inputs of the latch. Implement this circuit on a

breadboard or using simulation software like Multisim. Verify the operation by applying a

clock signal

helps understand how flip-flops store binary data and the role of the clock signal in

synchronous circuits.

7

7. T Flip-Flop Operation

Q: Design and implement a T flip-flop using JK flip-flops. Draw the truth table and verify

the output for various inputs.

A: When T input is high (1), T flip-flop toggles its output on each clock pulse. If T is low

(0), the output remains unchanged.

Create the truth table:

To design a T flip-flop using JK flip-flops:

1. Connect the J and K inputs of the JK flip-flop together and label this combined input

as T.

2. When T is 1, the JK flip-flop toggles its output with each clock pulse.

3. When T is 0, the output remains the same.

Implement this circui

This practical illustrates the concept of toggle operation and the versatility of JK flip-flops in

implementing various flip-flop configurations.

8

8. Synchronous 4-Bit Counter

Q: Design and implement a synchronous 4-bit counter using T flip-flops. Draw the state

transition table and verify the counter operation.

A: A synchronous 4-bit counter counts from 0 to 15 in binary and then resets to 0. An

identical clock signal triggers each flip-flop, guaranteeing simultaneous transitions. Create

the state transition table:

Connect four T flip-flops in series, with each flip-flop's output driving the next flip-flop's T

input. The first flip-flop's T input is connected to a logic high (1). The clock signal is

connected to all flip-flops simultaneously.

Implement this circuit on a breadboard or using simulation software. Verify the counter's

operation by applying a clock signal and observing the outputs. The outputs should represent

a binary count sequence from 0000 to 1111. This practical demonstrates the principles of

synchronous counters and their use in digital systems.

9

9. Multiplexer Implementation

Q: Design and implement an 8-to-1 multiplexer using 2-to-1 multiplexers. Draw the circuit

diagram and verify the output for various inputs.

A: An 8-to-1 multiplexer selects one of eight inputs (I0 to I7) based on three select lines (S0,

S1, S2) and outputs the selected input.

Use 2-to-1 multiplexers to construct an 8-to-1 multiplexer:

1. Use four 2-to-1 multiplexers for the first stage, each taking two inputs (I0 and I1, I2

and I3, I4 and I5, I6 and I7) and controlled by S0.

2. Use two 2-to-1 multiplexers for the second stage, each taking the output of two first-

stage multiplexers and controlled by S1.

3. Use one 2-to-1 multiplexer for the final stage, taking the output of the second-stage

multiplexers and controlled by S2.

Draw the circuit diagram and implement it on a breadboard or using simulation software.

Verify the output by setting different combinations of S0, S1, and S2, and applying inputs to

I0 to I7. The output should match the selected input based on the select lines. This practical

helps understand the hierarchical design and implementation of complex multiplexers using

simpler components.

10

10. Demultiplexer Implementation

Q: Design and implement a 1-to-8 demultiplexer using 1-to-2 demultiplexers. Draw the

circuit diagram and verify the outputs for various inputs.

A: A 1-to-8 demultiplexer routes a single input (I) to one of eight outputs (Y0 to Y7) based

on three select lines (S0, S1, S2).

Use 1-to-2 demultiplexers to construct a 1-to-8 demultiplexer:

1. Use one 1-to-2 demultiplexer for the first stage, controlled by S2, splitting the input I

into two intermediate signals.

2. Use two 1-to-2 demultiplexers for the second stage, each taking an intermediate signal

and controlled by S1.

3. Use four 1-to-2 demultiplexers for the final stage, each taking an output from the

second stage and controlled by S0.

Draw the circuit diagram and implement it on a breadboard or using simulation software.

Verify the outputs by setting different combinations of S0, S1, and S2, and applying input I.

The active output should correspond to the selected path. This practical illustrates the

implementation of complex demultiplexers and their use in digital systems.

11

11. BCD to 7-Segment Decoder

Q: Design and implement a BCD (Binary-Coded Decimal) to 7-segment display decoder

using logic gates. Verify the output for each BCD input.

A: A BCD to 7-segment decoder converts a BCD input (0000 to 1001) to the corresponding

7-segment display signals (a to g). Each segment is controlled by a specific combination of

BCD inputs.

Create the truth table for each segment (a to g) based on BCD inputs (D, C, B, A):

Design the logic circuits for each segment using AND, OR, and NOT gates based on the truth

table. Implement the circuit on a breadboard or using simulation software. Verify the outputs

by setting different BCD inputs and observing the 7-segment display. This practical helps

understand the conversion of BCD to visual representation on 7-segment displays.

12

12. 4-Bit Comparator

Q: Design and implement a 4-bit comparator using logic gates. Draw the truth table and

verify the output for various inputs.

A: A 4-bit comparator compares two 4-bit binary numbers (A3 A2 A1 A0) and (B3 B2 B1

B0) and outputs whether one number is equal to, less than, and greater than.

Create the truth table for the comparator:

Design the circuit using AND, OR, and NOT gates:

1. Compare each bit of A and B using XOR gates to determine if they are equal.

2. Use AND gates to determine if one number is greater or less than the other.

3. Combine the outputs using OR gates to generate the final comparison signals.

Implement the circuit on a breadboard or using simulation software. Verify the outputs by

setting different combinations of A and B, and observing the comparator outputs. This

practical demonstration demonstrates the design and operation of digital comparators, which

are fundamental components in digital systems.

13

13. 4-Bit Shift Register

Q: Design and implement a 4-bit shift register using D flip-flops. Draw the timing diagram

and verify the operation for various inputs.

A: A 4-bit shift register stores 4 bits of data and shifts the bits left or right on each clock

pulse. Use four D flip-flops connected in series, where each flip-flop's output serves as the

input for the next flip-flop.

Create the timing diagram:

Connect the D input to the first flip-flop and the output of each flip-flop to the input of the

next. Apply the clock signal to all flip-flops simultaneously.

Implement this circuit on a breadboard or using simulation software. Verify the operation by

applying different input sequences and observing the outputs. The timing diagram should

match the expected shifting behavior. This practical illustrates the operation of shift registers

and their application in data storage and transfer.

14

14. 4-Bit Ripple Carry Adder

Q: Design and implement a 4-bit ripple carry adder using full adders. Draw the truth table

and verify the sum and carry outputs for various inputs.

A: A 4-bit ripple carry adder adds two 4-bit binary numbers (A3 A2 A1 A0) and (B3 B2 B1

B0) and produces a carry-out (Cout) and 4-bit sum (S3 S2 S1 S0).

Create the truth table for each full adder stage:

Connect four full adders in series, with the carry-out of each adder connected to the carry-in

of the next. The first adder's carry-in is set to 0.

Implement this circuit on a breadboard or using simulation software. Verify the sum and

carry outputs by setting different combinations of A and B, and comparing the results with

the truth table. This practical demonstrates the design of multi-bit adders and the concept of

carry propagation in digital arithmetic.

15

15. Ring Counter

Q: Design and implement a 4-bit ring counter using D flip-flops. Draw the state transition

table and verify the counter operation.

A: A ring counter is a type of counter composed of a circular shift register. It cycles through a

predefined sequence of states. Utilize four D flip-flops interconnected in series, with the first

flip-flop's input and the last flip-flop's output connected.

Create the state transition table:

Initialize the flip-flops to a state where only one flip-flop is set to 1, and the others are 0.

Connect the output of each flip-flop to the input of the next flip-flop in a circular fashion.

Implement this circuit on a breadboard or using simulation software. Verify the counter's

operation by applying a clock signal and observing the outputs. The outputs should represent

the predefined sequence of states. This practical illustrates the operation of ring counters and

their application in digital systems.

16

16. Johnson Counter

Q: Design and implement a 4-bit Johnson counter using D flip-flops. Draw the state transition

table and verify the counter operation.

A: A Johnson counter is a type of counter composed of a shift register where the complement

of the output of the last flip-flop is fed back to the input of the first flip-flop.

Create the state transition table:

Connect four D flip-flops in series, with the complement of the last flip-flop's output

connected to the input of the first flip-flop.

Implement this circuit on a breadboard or using simulation software. Verify the counter's

operation by applying a clock signal and observing the outputs. The outputs should represent

the predefined sequence of states. This practical demonstrates the operation of Johnson

counters and their application in digital systems.

17

17. Binary to Gray Code Converter

Q: Design and implement a binary to Gray code converter using logic gates. Draw the truth

table and verify the output for various inputs.

A: A binary to Gray code converter converts a binary number to its corresponding Gray code

representation. The Gray code is a binary numeral system where two successive values differ

in only one bit.

Create the truth table:

Binary Gray

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

1010 1111

1011 1110

1100 1010

1101 1011

1110 1001

1111 1000

18

 The Boolean expressions for converting 4-bit binary to Gray code are:

● G3 = B3

● G2 = B3 ⊕ B2

● G1 = B2 ⊕ B1

● G0 = B1 ⊕ B0

Design the logic circuits for each Gray code bit using XOR gates based on the expressions.

Implement the circuit on a breadboard or using simulation software. Verify the outputs by

setting different binary inputs and comparing the results with the truth table. This practical

helps understand the conversion between binary and Gray code, which is used in error

correction and digital communication.

19

18. Gray Code to Binary Converter

Q: Design and implement a Gray code to binary converter using logic gates. Draw the truth

table and verify the output for various inputs.

A: A Gray code to binary converter converts a Gray code number to its corresponding binary

representation.

Create the truth table:

Gray Binary

0000 0000

0001 0001

0010 0011

0011 0010

0100 0110

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

1010 1111

1011 1110

1100 1010

1101 1011

1110 1001

1111 1000

 The Boolean expressions for converting 4-bit Gray code to binary are:

● B3 = G3

● B2 = G3 ⊕ G2

● B1 = B2 ⊕ G1

● B0 = B1 ⊕ G0

20

Design the logic circuits for each binary bit using XOR gates based on the expressions.

Implement the circuit on a breadboard or using simulation software. Verify the outputs by

setting different Gray code inputs and comparing the results with the truth table. This

practical helps understand the conversion between Gray code and binary, which is essential in

digital systems and coding theory.

21

19. BCD Adder

Q: Design and implement a BCD adder using 4-bit binary adders and logic gates. Verify the

output for various BCD inputs.

A: A BCD adder adds two BCD numbers and produces a BCD sum and a carry-out. A BCD

number is represented in binary but only uses digits 0 to 9 (0000 to 1001).

The circuit involves:

1. Adding two 4-bit BCD numbers using a 4-bit binary adder.

2. Checking if the sum is greater than 9 (1001 in binary) to adjust the result.

3. Adding 6 (0110) to the sum if it exceeds 9 to convert it back to a valid BCD number.

Create the truth table:

A B Sum Carry Adjusted Sum BCD Carry

0000 0000 0000 0 0000 0

0001 0001 0010 0 0010 0

0101 0101 1010 0 0000 1

...

1001 1001 10010 1 1000 1

Design the circuit using two 4-bit binary adders and additional logic gates for the adjustment.

Implement the circuit on a breadboard or using simulation software. Verify the outputs by

setting different BCD inputs and comparing the results with the truth table. This practical

demonstrates the design of BCD arithmetic circuits, which are used in digital calculators and

other applications.

22

20. 3-to-8 Decoder

Q: Design and implement a 3-to-8 decoder using basic logic gates. Draw the truth table and

verify the output for various inputs.

A: A 3-to-8 decoder converts a 3-bit binary input (A, B, C) into one of eight outputs (Y0 to

Y7), with only one output active at a time.

Create the truth table:

Design the logic circuits for each output using AND gates and NOT gates based on the truth

table. Implement the circuit on a breadboard or using simulation software. Verify the outputs

by setting different combinations of A, B, and C, and comparing the results with the truth

table. This practical helps understand the design and operation of decoders, which are

essential components in digital systems for addressing and data routing.

23

21. Binary Multiplier

Q: Design and implement a 2-bit binary multiplier using logic gates. Draw the truth table and

verify the output for various inputs.

A: A 2-bit binary multiplier multiplies two 2-bit binary numbers (A1 A0) and (B1 B0) and

produces a 4-bit product (P3 P2 P1 P0).

Create the truth table:

Design the circuit using AND gates to generate partial products, and use half adders and full

adders to combine these products.

mplement the circuit on a breadboard or using simulation software. Verify the outputs by

setting different combinations of A1, A0, B1, and B0, and comparing the results with the

truth table. This practical illustrates the design of binary multipliers, which are fundamental

components in digital arithmetic and signal processing.

24

22. 4-Bit Binary Subtractor

Q: Design and implement a 4-bit binary subtractor using full adders and logic gates. Draw the

truth table and verify the output for various inputs.

A: A 4-bit binary subtractor subtracts two 4-bit binary numbers (A3 A2 A1 A0) and (B3 B2

B1 B0) and produces a 4-bit difference (D3 D2 D1 D0) and a borrow-out (Bout).

Create the truth table for each full adder stage in a subtractor:

Design the circuit using four full adders, where the B inputs are inverted and an additional

logic gate is used to handle the borrow-in and borrow-out logic.

Implement the circuit on a breadboard or using simulation software. Verify the outputs by

setting different combinations of A and B, and comparing the results with the truth table. This

practical demonstrates the design of binary subtractors, essential for digital arithmetic

operations.

25

23. 4-Bit Magnitude Comparator

Q: Design and implement a 4-bit magnitude comparator using logic gates. Draw the truth

table and verify the output for various inputs.

A: A 4-bit magnitude comparator compares two 4-bit binary numbers (A3 A2 A1 A0) and

(B3 B2 B1 B0) and outputs whether one number is less than, greater than or equal to the

other.

Create the truth table for the comparator:

Design the circuit using AND, OR, and NOT gates to implement the comparator logic.

Implement the circuit on a breadboard or using simulation software. Verify the outputs by

setting different combinations of A and B, and comparing the results with the truth table. This

practical demonstrates the design and operation of magnitude comparators in digital systems.

26

24. Ring Oscillator

Q: Design and implement a ring oscillator using inverters. Draw the timing diagram and

verify the oscillation frequency.

A: A ring oscillator consists of an odd number of inverters connected in a loop, creating an

oscillating output signal due to the propagation delay of the inverters.

Create the timing diagram for a 3-inverter ring oscillator:

Connect three inverters in a loop, with the output of the last inverter connected to the input of

the first inverter.

Implement the circuit on a breadboard or using simulation software. Verify the oscillation by

observing the output with an oscilloscope or simulation tool. Measure the oscillation

frequency and compare it with the theoretical value based on the inverter delay. This practical

illustrates the principles of ring oscillators, which are used in clock generation and timing

applications.

27

25. 4-to-16 Decoder

Q: Design and implement a “4-to-16” decoder using two “3-to-8” decoders. Draw the circuit

diagram and verify the output for various inputs.

A: A “4-to-16” decoder converts a 4-bit binary input (A3 A2 A1 A0) into one of sixteen

outputs (Y0 to Y15), with only one output active at a time.

Use two 3-to-8 decoders to construct a 4-to-16 decoder:

1. Use the first decoder to decode the lower three bits (A2, A1, A0) and generate eight

intermediate signals.

2. Use the fourth bit (A3) to enable one of the two decoders, allowing the selection of

outputs Y0 to Y7 or Y8 to Y15.

The 4-to-16 decoder truth table:

Design the circuit using two 3-to-8 decoders and additional logic gates for enabling the

correct decoder based on A3. Implement the circuit on a breadboard or using simulation

software. Verify the outputs by setting different combinations of A3, A2, A1, and A0, and

comparing the results with the truth table. This practical helps understand the design and

implementation of larger decoders using smaller ones.

